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ABSTRACT 

A new method is presented for the numerical solution of time-dependent problems 
in several space dimensions. The technique is applicable to low-speed (incompressible) 
flows, to high-speed (supersonic) flows, and to all flow speeds in between, thereby 
bridging the gap through the almost-incompressible regime in which previously-described 
techniques break down. 

INTRODUCTION 

Most numerical methods for the solution of transient problems in fluid dynamics 
are applicable to only a restricted range of fluid speeds. For sonic or faster flows 
there are Lagrangian [l], Eulerian [2] and hybrid [3] techniques that have proved 
successful for numerous applications. For completely incompressible flows there 
are also several useful methods, all Eulerian [4], [5]. 

To bridge the gap, we have developed an Implicit Continuous-Fluid Eulerian 
(ICE) method that has proved successful for flow calculations in all velocity 
ranges. In the incompressible limit, the technique reduces to the MAC method, 
[5] while for supersonic flows it is an implicit variant of the usual Eulerian proce- 
dures. For all flow speeds (Mach numbers from zero to infinity) the ICE method 
gives a numerically stable and efficient means for calculating transient, viscous 
fluid flows in several space dimensions. It also serves as a basic technique in which 
visco-plastic effects can be included. 

The ICE procedure is based on an implicit finite-difference approximation to 
the full non-linear equations of fluid dynamics. Starting from prescribed initial 
conditions, the solution advances through a sequence of cycles, each step repre- 
senting the configuration at a small but finite time interval, at, later than the 
previous one. Space derivatives are represented by appropriate finite-difference 
approximations that are related to an Eulerian mesh of cells. The calculation 
sequence for each cycle is as follows. 
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1. The density for each cell is found by iterative solution of a finite-difference 
Poisson’s equation. Efficiency is increased in this solution by utilizing a previously- 
described corrective procedure [6]. 

2. The pressures for all the cells are calculated, using whatever equation of 
state is appropriate for the fluid. 

3. The velocities for all cells are advanced in time by means of finite-difference 
momentum equations. 

4. The new specific total energies and specific internal energies are calculated 
for all the cells. 

5. Lagrangian marker particles are moved, in order to denote the change in 
fluid configuration. (In confined flow problems these particles are optional as they 
do not enter into the dynamics; their principal utility arises in multi-fluid or free 
surface calculations, in which they mark the interface positions that are essential 
for applying boundary conditions.) 

THE EQUATIONS 

We illustrate the ICE technique for a material described by the equation of state 

P = a2(p - PO) + (Y - 1) PI, (1) 

in which the pressure, p, relates to the specific internal energy Z, and the density, p. 
“Normal” density is the constant, p O ; y is a numerical constant slightly greater 
than unity; and a is the sound speed at normal density and zero specific internal 
energy. An incompressible fluid is represented by a2 + co. 

For illustration, we limit the viscosity to a simple “artificial” form, rather than 
incorporating the full stress tensor. Some viscosity is shown to be necessary for 
the calculation of shock dynamics and other high-speed flows. The illustration is 
also restricted to plane two dimensional flows, for which we start from the equations 

apu apu 
z+x+F = 0, 

apu apu2 - -+c!gF 
at + ax +go, 

aPv ap24v apv2 ap 
at+ax+ay+ay=o, 

aPE apuE apvE ah ah 
ar+~+~+Ex+S=o. 

(4) 

(5) 
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The velocities, u and D, are, respectively, components along the coordinate axes x 
and y. E = I + &(u2 + u2) is the specific total energy, while P = p + q, where q 
is the artificial viscous pressure. Typically we might have q proportional to the 
velocity divergence. 

The crucial feature of the ICE procedure is the choice of finite-difference 
representation by which these equations are to be approximated. We have used the 
following: 

+ (&+1,2.j + qF+1,2J Gly2.* - (&-l,Z,j + 9;1_1,2,j) e;,e.j1 

(9) 

where 
p s a2(jp+l - PO) + (Y - 1) p+ll”. 

The various indices are related to the mesh of cells and to the finite-difference 
time advancement; the indices i and j count cell-center positions in the x and y 
directions, respectively, while i f 4 and j f 4 are cell boundary positions. The 
superscript index, n, counts time cycles. The specific quantities, p, E and p, are 
defined at cell centers; thus cell-boundary values are obtained as simple averages 
of the two adjacent quantities while cell-corner values are the averages of four 
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adjacent quantities. The velocities are defined at cell boundaries with u at the 
i & 4 points and v at the j & & points. Again, cell-center or cell-corner velocities 
are obtained as averages. These centerings are illustrated in Fig. 1. 

P;j ,Pij ‘Eij 
0 

* 
V ii-‘/z 

“i + Y2j 

FIG. 1. Placement of field variables about an ICE cell. Density, pressure, and energy are 
defined at the cell center, while velocity components are defined at the cell boundaries normal 
to the components. 

METHOD OF SOLUTION 

The essential features of the ICE technique are contained in the finite-difference 
equations, and particularly in the time centering of the various terms, as will be 
demonstrated by analysis of the truncation errors and the limiting cases of slow 
and fast flow. The procedure for solving these equations, however, introduces 
several features that are also of importance to the success of ICE. 

Foremost among these secondary features is the introduction of the auxiliary 
function 

u = a”(p - po> + Kp (10) 

in which K is a constant. The general prescription for defining u for any equation 
of state will become clear as soon as the purpose of u has been demonstrated. 
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To see this, we eliminate the advanced-time velocities from Eqs. (6) (7) and (8). 
First, from Eq. (6) js subtracted the same equation in which the index n has 
everywhere been reduced by one. Then, from Eq. (7) is subtracted the same equation 
in which the index i has everywhere been reduced by one, while likewise for Eq. (8) 
one subtracts the same equation with j reduced by one. The three results can then 
be combined in such a way as to eliminate all of the advanced-time velocities, the 
result being 

This is the principal equation to be solved. The unknown quantities are the 
various new-time densities, p n+l of which nine different ones appear in the equation, , 
corresponding to the cell i, j, and its eight neighbors. 

To solve the coupled set of equations given by Eq. (1 l), it is convenient to use 
some method of iteration, cycling through the mesh until the new density field 
satisfies Eq. (11) everywhere to some prescribed degree of accuracy. For high-speed 
flows, in which the density varies appreciably from pO, the iteration for new 
densities can be accomplished with the equation as it is. For low-speed flows, 
however, the density scarcely differs from p,, and accordingly is unsatisfactory as an 
iteration variable. This, then, is the reason for introducing a; with u as an iteration 
variable and K chosen to equal the square of some representative fluid speed, the 
iteration on (J will be satisfactory for all possible values of a2/K from zero to very 
large. Indeed, as a - co, the a-variable form of Eq. (11) [Eq. (12), below] then 
reduces directly to the iterative equation for pressure used in the MAC method 
[5J. four preliminary ICE technique proof-test calculations used Eq. (11) success- 
fully for Mach numbers down to about 0.2; below that, the loss of significance in 
density variations required inefficient iteration convergence restrictions. A change 
to iteration on cr cured the difficulty completely.] 
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We next define 
at2 

Aii = p Ku”): + a2 + (y - 1) 1;1, (13) 

Bij s & [(v"): + U2 + (y - 1) l:], (14) 

G,,,,,i = & IW~+1/2.i+1/2 - W~+1,2.i--1,211 (15) 

&,M2 = & K~~)~+I/2,~+112 - WL,2.if1,21> (16) 

Fi+112.i+1/2 = & w~+112.~+1/2 ? (17) 

Gij = u;~:' - 2~7;~ - u~~,,(A~+~,~ + Ai+ - 2Aij + Bi,j+l + Bi,j-l - 2Bij) 

- (a” + K) [g (4z+l,j + 4:-1,j - 2qE) + & (4T,j+l + $,j-1 - 2qg)] 

- 4u2PCiCi+1/2,j - ci-l/2,j). 08) 
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This is the equation for u ?z+-I to be solved. Because of the advanced-time values, 
un+l, appearing in the momentum convection terms, this is a nine-point equation; 
it could be reduced to a five-point equation through the use of un in those con- 
vection terms, but it can be shown that this would have a small adverse affect on 
numerical stability. Solution of Eq. (19) can be accomplished by any of several 
existing techniques. For example, a convenient over-relaxation process of iteration 
is accomplished by the formula 

-n+1 _ n+1 
+ 

1Sa 
uij - -CdUi* 

1 + 24j + 2Bij - G+1/2.j - G-1,z.j 
[Fi-l/~,j-dTT,j-~ 

+ (Di.j+l/a + Bi,j+A U?$-I + 4+1/2,j+1/d~Li+1 - Gijl, WV 

in which ii indicates the new value for the particular iteration, and cycling is implied 
in the directions of increasing i andj. The overrelaxation parameter, 01, is a number 
slightly exceeding unity, and iteration is repeated until some criterion of con- 
vergence is satisfied. 

When the new values of u have been obtained, the densities can be found from 
Eq. (lo), while to find the pressure we use 

p = 0 + pNy - 1) I- 4 (21) 

rather than Eq. (l), in order to preserve accuracy in low-speed flows. One then 
finds, in order, the new velocities, energies and internal energies, using, Eqs. (7)-(9). 

INITIAL AND BOUNDARY CONDITIONS 

The initial state is described by an arbitrary prescription for the distribution of 
velocities, density and internal energy, together with the field variables derived 
from these. In addition, it is necessary to specify the density distribution as it 
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would have appeared at one cycle before the starting time. In many three-time-level 
techniques, this pre-starting-time distribution is also arbitrary, and there is reason 
for concern as to how the choice should be made. For the ICE method, this 
difficulty does not arise. In terms of densities and velocities arbitrarily prescribed 
for the initial state, the pre-starting-time density distribution is determined uniquely 
by Eq. (6). Indeed, any other choice would lead to fallacious results in the sub- 
sequent cycles of the calculation. 

Various boundary conditions can be used, and, as in most finite difference 
computing techniques, some of them can be determined uniquely in terms of the 
required fluxes of mass, momentum and energy. At a rigid wall, for example, the 
vanishing of all convective fluxes implies the vanishing of the normal velocity 
component. If the wall is no-slip, then the tangential velocity also vanishes. At a 
free surface, the normal fluxes of both normal and tangential momentum must 
vanish, imposing conditions much like those in MAC [5]. Input walls are easily 
described by the fluxes that are required, while output boundaries suffer from the 
same arbitrariness experienced in MAC, and can be treated by the same procedures. 
As in MAC, it is, in general, essential that the boundary conditions be consistent 
throughout the equations, in order that Eq. (6), which nowhere is explicitly used 
in the calculation, is nevertheless accurately satisfied everywhere. 

STABILITY AND ACCURACY 

Hirt [7] has given an effective technique for stability and accuracy analysis that 
accounts for variability of the coefficients in the finite difference equations. He 
argues that the principal finite-difference effect in the transport equation for some 
quantity can be found in the diffusion coefficient for that quantity. In the present 
case, it is sufficient to consider the one-dimensional versions of Eqs. (6) and (7), 
which, to lowest contributing order in the diffusion terms, can be written 

(22) 

and 

in which c is the sound speed, and we have taken 

For the ICE-method equations in the proposed form, p = E = 1. If the convective 
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terms in the momentum equations contain the pn values (instead of pnfl), then 
Eq. (19) becomes a five-point equation to solve, but E = 3 so that the diffusion 
coefficient in Eq. (23) is decreased. The result is poorer stability, as mentioned 
previously. 

If the pressure terms were formed with pn instead of p*+l in the momentum 
equations, then p = -1, and the tendency to instability becomes intolerable as 
the sound speed increases. This is not unexpected, however, since the presence 
of p” in the pressure terms renders the momentum equations purely explicit, and 
these are known to suffer in stagnation regions. 

With the proposed form of the ICE method, both the mass and momentum 
equations exhibit greater and greater diffusion as the sound speed increases. The 
question arises as to how it is that the limit of infinite sound speed (the MAC 
method) can give useful results with infinite diffusion coefficients. The answer lies 
in the fact that for such “incompressible” flows, density does indeed remain 
constant, as if diffusing with infinite speed, while the infinite diffusion of momentum 
occurs only in the one-dimensional equations, again reflecting incompressibility. 

A consequence of this enhanced diffusion, however, is seen in the widening of 
shock-front thicknesses as the sound speed becomes large. Our one-dimensional 
tests show this especially well. Although this causes no concern in two dimensions, 
one still may inquire into the possibility of a curative modification. Immediately 
apparent is the effect of using $(p” + pn+l) in the pressure, in which case /3 = 0 
and the excessive diffusion vanishes. Stability then depends entirely upon the 
presence of the viscosity term, with the sharpness of the momentum fronts de- 
pending upon the value ofy. The corresponding term in Eq. (22) is likewise removed 
by such a time centering of the mass equation. We have not yet experimented with 
such modifications but envision the possibility that they could significantly enhance 
the accuracy. It should be observed, however, that Eq. (22) demonstrates the 
necessity for inclusion of an artificial mass diffusion term when such time centering 
is used. Thus, the alternative proposal for the ICE-method equations is of the 
following form: 

(25) 

together with a redefinition of p in Eqs. (7) and (8) such that 

p E aypn+1/2 - PO) + (y - 1) pn+wrn. 

The mass diffusion is controlled by the constant coefficient, K, and the half-time 
centering for any quantity is defined 

0 n+1/2 SE $[( )” + ( )Wl], 
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The principal difficulty introduced by this alternative time centering is that of 
finding the pre-starting-time values of density, velocity and specific internal energy. 
No longer would Eq. (6) alone be sufficient; it would be necessary to solve simul- 
taneously the entire set of equations, requiring some technique that has not yet 
been worked out. 

There is, however, a second way in which the excess numerical diffusion could be 
removed from the ICE method. To the mass and momentum equations could be 
added explicitly diffusion terms with negative coefficients exactly (or nearly) 
cancelling the adverse terms in the error analysis. Thus, for example, Eq. (2) would 
be replaced, in one space dimension, by 

(26) 

thereby removing from Eq. (22) the most troublesome of the excessive diffusion 
terms. 

TABLE I 

PARAMETERS FOR THE Two ONE-DIMENSIONAL ICE-METHOD CALCULATIONS 
SHOWN IN FIGS. 2 AND 3” 

Figure No. 

Incoming Mach No. 

No. of Cells 

I 6X 
I 0.10 

/ 
I 

St 0.01 ~ 0.02 

Ps = PO 1 .oo 
! 
I ~~.s 1.00 

~ 4 0 

Y 513 

a 0 -w 5.00 

F 0.20 I 0 

I K I 1.00 I 

aThe subscript “s” denotes initial or starting conditions. These same values are maintained 
at the left (input) boundary during the entire run. The right boundary is a rigid wall. 
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FIG. 2. One-dimensional ICE-method calculation of an infinite-strength shock (incoming 
Mach number = co) at a time t = 3.00. 
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SOME CALCULATED EXAMPLES 

The ICE-method properties are illustrated by the calculation of fluid piling up 
against a wall. The results, which depend upon only one space variable, are plotted 
in Figs. 2 and 3 for the representative problems described in Table I. 

Figure 2 shows the one-dimensional calculation of an infinite strength shock 
(incoming Mach number = cc) at a time t = 3.00. The three plots are of u : x, 
I : x, and p : x, respectively. The resulting rarefaction wave shows I-/Z+ = 0.50, 
p-/p+ = 4.00, and p = 4/3, which agree with simple shock theory. Note that the 
velocity profile shows no tendency to the usual instabilities of a perturbed stagna- 
tion. Note also that the entropy is high at the right (rigid) wall, as is common in 
Eulerian schemes. This is manifested in a high I and low p at the wall; however, 
p comes to the proper value. 

Figure 3 shows the same calculation performed in the far subsonic incom- 
pressible flow regime at a time t = 0.70. Note from Table I that the only crucial 
parameters that were changed from the previous calculation are St, p, and a. 
Again, the three plots are of u : X, Z : x, and p : x, respectively. In this case, p-/p+ 
comes to the proper theoretical value of 1.21. 

The technique is being applied to calculate wake flow through all Mach number 
variations from zero (incompressible Ilow with von Karmsin vortex street) to values 
exceeding unity (supersonic flow with Prandtl-Meyer turning and wake-shock 
formation). These results will be reported elsewhere. 
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